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ABSTRACT

In this report, we have designed an essentially non-oscillatory reconstruction for functions

defined on finite-element type meshes. Two related problems are studied : the interpolation

of possibly unsmooth multivariate functions on arbitrary meshes and the reconstruction

of a function from its average in the control volumes surrounding the nodes of the mesh.

Concerning the first problem, we have studied the behaviour of the highest coefficients of the

Lagrange interpolation function which may admit discontinuities of locally regular curves.

This enables us to choose the best stencil for the interpolation. The choice of the smallest

possible number of stencils is addressed. Concerning the reconstruction problem, because of

the very nature of the mesh, the only method that may work is the so called reconstruction

via deconvolution method. Unfortunately, it is well suited only for regular meshes as we

show, but we also show how to overcome this difficulty. The global method has the expected

order of accuracy but is conservative up to a high order quadrature formula only.

Some numerical examples are given which demonstrate the efficiency of the method.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NASl-18605 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1 Introduction

During the past few years, a growing interest has emerged for building high order accurate

schemes (i.e of order greater that 2) for compressible flows simulations. It is well known that

even for smooth initial conditions, these flows may develop discontinuities that make linear

schemes useless.

At the beginning of the 80's, the class of Total Variation Diminishing schemes appeared

and they have been successfully and widely used with many types of meshes (see for example,

[1] for a review and, among many others, [2] for simulations on finite element type meshes).

Nevertheless, one of their main weaknesses is that the order of accuracy falls to first order

in regions of discontinuity and at extrema, leading to excessive numerical dissipation.

Various methods have been proposed to overcome this difficulty (adaptation of the mesh

for example) but one promising way may also be the class of the Essentially Non-Oscillatory

schemes (E.N.O. for short) introduced by Harten, Osher and others [3, 4, 5, 6, 7].

The basic idea of E.N.O schemes is to use a Lagrange type interpolation with an adapted

stencil : when a discontinuity is detected, the procedure looks for the region around this

discontinuity where the function is the smoothest. Then a reconstruction technique may be

applied which enables approximation of the function to any desired order of accuracy from

its average in control volumes surrounding the mesh points. The approximation is done so

that it is conservative.

Some attempts have been made to extend these ideas to multidimensional flows (see for

example [8]), but only for structured meshes.

In this report, we intend to study the problem of the reconstruction, up to any order

of accuracy, of a given function given either by its value at the nodes of a triangulation or

by its averages on control volumes defined around these nodes so that, in the second case,

the reconstruction is conservative. This latter problem has already been studied, for smooth

functions only, by Barth et al. [9] but their method does not appear to generalize easily to

unsmooth functions.

The outline of this report is as follows. In the first part, we give some basic facts

about Lagrange interpolation in several dimensions. In particular, we study the problem of

the localization of regions of smoothness from the Lagrange interpolation coefficients that

generalize those known in one dimension. These results seem to be new. Then, we propose

an algorithm for E.N.O. interpolation and we try to give some indications for selection of the

smallest family of the possible stencils for second and third order approximation, the only

ones considered in this report. We also propose an adaptation of the so-called reconstruction

via deconvolution procedure that was originally built for regular meshes, and indicate why,



in general,the conservationproperty must be lost to ensurea high order of approximation.

Some numerical tests indicate the performance of this method.

1.1 Notations

I_ [X, Y] : finite dimensional vector space of two variable polynomials over IR,

g(n) = (n + 1) (n + 2)2 : dimension of IR,_[X, Y],

• 8(4) admissible stencil for solving the Lagrange problem in II_[X, Y], see section 2.1.2,

• IIUll is the euclidian norm of U,

Olu where i+j = l,
• Diju = O, xOJy

• Dnu : n-th derivative of u.
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2.1

2.1.1

Lagrange interpolation on arbitrary sets of IR 2

Sets of admissible points

The polynomials in ]R _

We will denote by IR[X, Y] the vector space of the polynomials of two variables (X and Y)

with coefficients in IR. An element of IR[X, Y] may be described by its (finite) expansion in

terms of powers of X and Y :

P(X,Y) = _ _ a, _X'Y _ (1)
/=1 i+j=l i,j>O

The highest integer such that at least one of the coefficients of the monomials XiY j is non

zero is called the total degree of P.

If (x0, y0) is a point of IR _, another expansion of P may be written in terms of the

monomials (X - x0)i(Y - y0) j with the help of the Taylor formula. The total degree of P

does not depend on the point (x0, y0).

In the sequel, we will denote by IR,[X, Y] the (finite) vector space of the polynomials

of IR[X, Y] with total degree less or equal to n. This vector space has dimension N(n) =

(n + 1)(n + 2)
2 , a basis of which is the set of monomials (X - xo)i(Y - yo) j of total degree

i + j less or equal to n.

Let us now describe another interesting basis of I_[X, Y]. Consider (A, B, C) a triangle of

IR 2 and let us denote by AA, AB, Ac the barycentric coordinates of the three points (A, B, C)



defined, for any point M, by :

M= AA A+AB B+ Ac C

AA q- AB q- Ac = 1

It is easy to se that, for any pair of points, say A and B, the set {A_ AjB}i+j_n

basis of I_[X, Y].

(2)

is also a

2.1.2 The Lagrange interpolation problem in IR 2

The Lagrange interpolation problem may be formulated as follows :

Given N and n, two integers, a family of N pointsin IR 2, S(") = (A_)a<i<N and

N real values (ui)l<i<N, find an element P ofll_[X,Y] such that for any point

Ai of S('O, one has P(Ai) = ui.

In the sequel, we will often make no distinction between an element of S("), Az, and its

coordinates in a suitable frame, (xz, yl).

For this problem to have a solution, two conditions must be fulfilled :

1. one must have N = (n + 1)(n + 2)
2

2. the following generalized Van der Monde determinant must be non zero :

(x,, yt) _ ,9(")

1

1

xl yl "'" x_ xT-'yl . . . x_

XN YN "'" X_ x_-lyN "''X_g

(3)

We will say that the set ,9(") is admissible if As(.) ¢ 0. If a set ,900 is admissible, there

exist (n + l)(n + 2)
2 coefficients , (ai j), such that the solution of the Lagrange problem is :

n

P = E E a, ixir i. (4)

l=i {+j=l i,j>.O

The problem of characterizing the admissible sets has been widely studied, see [10] for

example and the references therein.

Remarks :

1. The condition (3) has been given for the basis Xir j of ]R_[X,Y]. A similar and

equivalent condition could have been given for the two other bases we have mentioned.

The formula (4), provided that the monomials XiY j are replaced by the elements of

the new basis, is also true.

3



2. If card 8 (1) = 3, this condition is nothing more than the one which says that the three

points must not be aligned.

3. If we were in JR, this determinant would be the classical van der Monde determinant.

4. The set of (n + l!2(n + 2)_uplets where the condition (3) is not fulfilled is an algebraic

curve of ]R N(n) and consequently a closed subset of measure zero in ]R N(n).

In the next section, we address the question of the practical calculation of the coefficients

ai j.

2.1.3 Determination of the Lagrange expansion

In this section, we use the monomials XiY j for expanding polynomials, but any other basis

would be suitable and the results are immediately transferable.

The coefficients of the Lagrange expansion are the solution of the linear N(n) × N(n)

system :
n

u, : __, __, ai jx_ y{ for all (x,,yt) 6 S('_). (5)
/=1 i+j=l i,j>O

Since condition (3) is true, the Cramer formula applied to (5) gives the answer.

Several authors have tried to generalize the Newton formula that make the Lagrange

interpolation efficient from a numerical point of view, and a very general answer has been

given by Muhlbach [11, 12].

In these papers, he addresses the problem of the Lagrange interpolation by a set of

functions (fi)_l on a set of points (Ai)_ei. He calls the set (fi) a Cebysev-system if given

any function f, for any pair of subsets of I, L and M, having the same (finite) number of

elements, there exist real numbers a_ such that :

ui = _ a_fj(Ai), for all Ai e L. (6)
jEM

For the sake of clarity, we may assume that L = M = {1,-.. N}. He uses the notation :

fl""fk

for denoting the coefficients of fk in the development (6). Then, in [12], he shows that if one

has a Cebysev system (theorem 4.1 pp. 106) :

[ A'"A-1

A1." n [/1""A-1
[ A2"'" A,_

so- A1." A,-1

AI "'" A,_-I

(7)



This expression is a direct generalization of the classical Newton formula. Let us make

several comments on this formula when applied to our problem :

1. If one adopts the lexicographic ordering 1,X,Y,X2,XY, Y2,...,X'_,X'_-IY,

...,Xy_-a yn, the previous formula (7) must be applied n + 1 times to go from a

total degree n to a total degre n + 1. One must Mso store quite a lot of terms like

fl""fkAI'.. Ak f ]

to build the divided difference table. For example, to go from degree one to degree

two, one must evaluate and store C_ approximations of gradients by means of approx-

imations on triangles, combine them to obtain approximations on sets of four points

(C 4 sets), of five points (C_ sets) and of six points (one set). Moreover, to go from

approximation on k points to k + 1 points, (k + 1) × (k + 1) determinants must be

evaluated.

2. From a numerical point of view, the basis X_Y _ or (X - a)_(Y - b) j are not well suited

to calculations. This can easily be seen since for any pair (a, b),

] (x,,y,) e I (x,,y,) c s

If (a, b) is any point of S (_) and if h = max(_,y,)es(,)(Ix_- al, ]y_- bl) , then Hadamard's

inequality shows that :

IAs(.)l _<h_(n),

where to(n) = 1 + _I=I,nP(P + 1!(2P + 2) = O(n 4) so that one reaches very quickly

machine zero though the linear system may be well conditioned.

An alternative to this last point is to use local coordinates such as the barycentric ones. In the

E.N.O. method we will develop in a further section, for each point, the natural barycentric

coordinates are not known a priori so that the work has to be repeated at each interpolation

call. If this is included in an iterative algorithm, the cost (and the storage) seems to be much

too important at least for the cases we have considered in this report. For all these reasons,

we have preferred to use classical inversion techniques for linear systems.

2.2 A recurrence formula

In this section, we wish to show another recurrence formula that enables us to obtain the

coefficients of the expansion of total degree n from those of the expansion of total degre less
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than n in only one step. This recurrence formula may be viewed as another version of that

given in [12], theorem 3.1, page 400 and will be useful in section 2.3.

Let us begin with some notations. Let P1, "" ", PN(n) be a basis of II_[X, Y] such that

/)1, "" ', Pg(p), P < n, is a basis of IRv[X , Y]. The three bases we have considered in section

2.1.2 are of that kind. Let A1, .. ", AN(n) be admissible points. We set :

R L : (PI(AL)... PN<n)(AL)) T

so that the solution of the Lagrange problem (where the ui's are given),

ui = _ ajPj(Ai) for all Ai e L,
l_j__N(n)

may be seen as the solution of the linear system

J_ (Ol,'''_N<n)) T : U-- (?21'''UN(n)) T, (8)

where the Lth row of .A4 is RL. The solutions of system (8) are :

det(R1... RL'" RN(n))

a_ = det(R1.. . RL" " RN(n))' (9)

where RL = U denotes the L-th column.

Lemma 2.1 Let (Ai)l<_i<_N(n) be an admissible set in which any of its N(p),p <_ n subsets

is admissible. Then, for a given p < n, let I = {il,". iN(p)} and J be ordered sets such that

I(.Jg = {1,... N(n)}. If A = (ai j) is a N(n) × N(n) matrix, we set

det(A), = det(ai j)] 1 < i < N(p) '

I jEI

and det(A)j = det(ai J)l g(p) + 1 < i < N(n)

I jEJ

Let us also denote by aL, I(p)the coefficient of PL, of the Lagrange problem of degree p for nodes

in I (for degree n, we omit the subscriipt I).

Then for any L' _ N(p), we have

gLn)= Er,cord<1)=N(p) /LL' L I

(10)
ALL' = (_1)_(l) det(R1... RL,". RN,)t det(RN(p)+I... RL,... RN)j

det(R1... RN)

where a(I) = 1 + p(p+ 1)/2 4- _]i_ii. In (10), RL, appears a :first time at the L'-th row of

det(R_ . . . RL, " .. RN,)I and a second time at the L-N(p)-th row of det(Rg(p)+l . .. RL, " " RN)j.



Proof : By switching columns L and L' in (9), one gets :

a(L,_)= det(R1... RL'" RL,"" RN(,_))
det(R1... RL'" Ry(n))

Then, a direct application of the generalized Lagrange formula (see [13], pp. 19-22) to the

previous expression gives

det(R1,... RL... RL, ". RN(n)) --

__I,card(I)=g(p}(--1) a(I) clef(R1... RL"" Rg(p))I det(RN(p)+l... RL,'" RN(,_))J

Since any N(p) subset is admissible, one has

a(p) det(R1... RL"" RN(p))I

n I = clef(R1... RL,'" RN(n))I'

and the results follows immediately. •

With the assumptions of lemma 2.1, then, for p < n, if g(p) < L < N(n) andLemma 2.2

L' < N(p),

)_L L' __ O.

I,card(I)=N(p)

Proof : Apply the Lagrange formula to

det(R1... RL .... RN(p}RN(p)+I "'" I_L, RN(n)) = 0,

and interpret the coefficients in terms of a's, all equal to 1, and _'s. The lemma 2.1 gives

the result •

2.3 Approximation of smooth and unsmooth function by poly-
nomials

The problem of interest in this section is the following : Let u be a real function defined

on an open subset Q of IR 2. We assume that u is n times continuously differentiable on

except perhaps on a subset of Q consisting of a finite collection of locally C 1 curves. Let now

Y be a mesh. For each point of T, we consider a Lagrange interpolation of u. Is it possible

to localize the regions of smoothness of u from the coefficients of the Lagrange interpolation

of u ? The answer is yes, at least for second and third order approximations if additional

assumptions are made on the mesh. These assumptions guarantee that one can solve the

Lagrange problem for any order from 1 to n, and may be seen as a very natural generalization

of classical conditions used in the finite elements theory [14].

For functions defined on lR, one knows that the divided differences of u satisfy :

7



• If u is smooth on an interval I containing xl,.., xn, then there exists _ E I such that

[xl,x2,...,x°lu] - n! '

• if u (k) has a jump [u (k)] on I, one has

,x.lu] = -

In this section, we intend to generalize these relations, and in particular, the second one

since this problem seems (surprisingly) not to have been studied yet. The proof appears to

be technical, and we have not been able to prove it for any total degree. The proof is divided

into two parts. In the first part, we study the case of a stencil 8(") of N(n) points where u

admits two values, 0 and 1. We show here that the polynomial of degree n that interpolates

u is exactly of total degree n. Then, we define a condition on the stencils that appears to be

a generalization of the one that says that triangles must not have too small angles to ensure

a uniform error bound for classical finite elements [14]. Then, using Lemmas 2.1 and 2.2,

we obtain our result. Let us begin with the case of a stencil in which the convex hull u is

smooth.

z =

2.3.1 Case of a "smooth" stencil

This problem has been studied by for example Ciarlet and Raviart in [15]. Let us recall one

of their main results :

Theorem 2.3 Let E N_- {ai}i=i be an admissible (for degree k) set of points of ]R _, and let

h and p be respectively the diameter of E and the suprenum of the diameters of the spheres

contained in the convex envelop K of E. Let u be a function that admits everywhere in K a

k + lth derivative D k+l u with

ik+l = sup{][nk+lu(x)[];x C K} < Text.

If P is the unique interpolating polynomial of degree <_ k of u, we have for any integer m

with 0 <_ m <_ k,

hk+a

sup{llDmu(z)- DmP(x)l[;x e K} < CMk+_ pm

for some constants

C -= C(n, k, m, E).

Moreover, if E' is obtained from E by an affine transformation, then C(n, k, m, E) =

C(n, k, m, E').

From this inequality, one sees that the "flatter" E is, the poorer the estimation is.

direct application of this theorem gives a generalization of our first statement.

A

E



2.3.2 Case of an "unsmooth" stencil

Study of a simplified problem

Let us consider $ (n) an admissible stencil of cardinality (n + 1)2(n + 2)and So, $1 two non-

empty subsets of S(,0 having empty intersection, the union of which is S ('0. Let us consider

a polynomial P of total degree n such that for all points of S0, P has value 0 and for those

of $1, P has value 1. Then we conjecture that :

Conjecture 2.1 If S ('0 is admissible, then the total degree of P is exactly n.

We have not found in the literature any general proof of the statement, but we have the

following lemma :

Lemma 2.4 If any subset of cardinality (k + 1)2(k + 2), k _< n, of $(,0 is admissible, then

the conjecture 2.1 is true for n = 1,2

Proof : The proof will be given for degree 1,2. We also indicate the difficulties for higher

degree.

• Degree one. The stencil is made of three points A, B,C that form a triangle. P is

either of type AA or 1 -- AA and is of degree exactly one.

• Degree > 1. Let us assume that P is at most of degree n - 1. Set N = card(So) and

M = 5'1. We have N + M = N(n). One may assume that N _< M by changing P into

1 - P. So, 2N < N(n). In the following table, we give the maximum values of N up

to degree 6 :

degree

2

3

4

5

6

(n + 1)_ t--_ Nm_x

6 3

10 5

15 7-8

21 10-11

28 14

From this table, one can see that there is always, for degree 2, at least 3 points that

have the same value. Since these three points are admissible for degree one and since

by assumption, P is either a constant or of degree 1, we see that it must be a constant

which is absurd since it takes two different values. The same argument applied to

degrees n=3,4,5 shows that P must be of degree exactly n- 1 because we always have

(n+l) (n+2) > n(n+l)
4 - 2 '



but fails for degreesgreater or equal to 6 (because the previous inequality does not

hold if n > 5)..

With this in hand, we get the following result, if Ri i is the following vector :

n, _= ((xl- xo)'(yl-y0)s... (xN- _0)'(yN- y0P)_

Lemma 2.5 Let (Xo, yo) be any point of the convex hull E of S(,O. Assume that conjecture

2.1 is true. Let P be a polynomial that is 1 on 31 and 0 on So where both sets satisfy the

assumptions of lemma 2.4. If h = max{(lxt- zol,lyt- yol),(_,y_) _ s(°)}, and _ S(")
satisfies, for some a > O,

Min{xoE_,,det R00 Ro,, ] } (11)Ilno01----q----_llRoI > 4,

then there exist two constants Cl(n,a) and C2(n) such that the coefficients of the Taylor

expansion of P around (Xo, yo) :

P = _ ai j(X -- xo)i(Y- y0) 1,
i+j<n

satisfy

Remark :

C2(n) h-'_ >-- Y_ Ia, Jl >- Ca(n,a) h-n" (12)
i+j=n

i

1. The set of points we define is clearly not empty because, on the convex hull of S ('0

(which is compact), the function defined by the right hand side of (11) is continuous.

2. If S ('0 were a triangle, for example, the minimum of that function would be the mini-

mum of the absolute value of the sines of its angles.

Proof : We adopt the lexicographic ordering of monomials. The set of admissible stencils

satisfying condition (11) and Ihl < C is a compact subset C of IR N(n). Let us consider the

real functions defined on (7 by :

¢i j(Ax,...,AN) = Y_ Idet(Roo"'Ui 5"" Ro,_)l,
i=l,n

and

det(Roo'" _j'" Ro,)

¢,j(A_... AN) = d-_-(_R-_--:- RN) '

in which the vector Uij stands at the "ij"-th column and has the value



Let also V_ j be _+j<,_ P(A_j)U_j where the "1" is at the L-th position (we refer to the

lexicographic order). Let us note that P(Aij) is zero or one, and its value depends only on

ij and not S (").

It is clear that ¢_j is the coefficient of (X - xo)i(Y - yo) j in the Taylor expansion of P.

It is also clear that

h _+_ Idet[Ro o"" R_ j... Ro ,]1 _ ¢_ j,

by the triangle inequality. So,

h '_ O(Ax,...,AN) = h" E
i+j=n

la i j[ > _ det(Roo... , Vii... Ro,,)
i+j=n ¢_ J

The left hand side of this inequality is a continuous function on (7 and hence reaches its

minimum. This minimum cannot be zero because that would mean that all of the alj's are

zero which is absurd by assumption, and from lemma 2.2.

Now let us turn to the second inequality. We have

h" 0(AI,...,AN) = h n E Iai Jl = E [¢i Jl.
i+j=n i+j=n

The left hand side is also a continuous function on C and is bounded above. Clearly, the

latter constant does not depend on _. •

Corollar 2.6 With the assumptions of lemmas 2.4 and 2.5, let n and p be integers satisfying

p < n. Choose L and L' such that N(p- 1) < L' < N(p) and N(n- 1) < L < N(n). Then

there exist two constants Ca and C2 such that

C2(n)h-,+p > _ n' > Cx(n,a)h-,_+p,

for any subset of cardinaIity p.

Proof : We apply the definition of _L L' and the same techniques used in the previous

lemma •

Now, we may state our main result :

Theorem 2.7 Let S(_) be a stencil satisfying the assumption of Lemmas 2.4 and 2.5 for

n = 1,2. Let u a real function defined on an open subset off_ in IR 2 being C 1 except perhaps

on a locally C 1 curve where its n-th order derivative may have a jump [D'_u] such that the

intersection Z of that curve and the convex hull of S ('_) is not empty. Then there exits a

constant C(n, a) > 0 such that the coefficients in the Taylor expansion towards a point of I

satisfy :

[D"u]
Y_ la, 51> C(n,c_) h" (13)

i+j=n

11



Proof : Let us assumethat u admits p-th continuous derivatives but its p + 1-th ones have

a jump on a locally C 1 curve C. Let a2L be the coefficients of a Lagrange interpolation of

degree p on a suitable subset of S ('). The recurrence formula of Lemma 2.1 gives :

E
I,cardI=N j

Let $+ and 8_ be the subset of 8 (n) defined by

a e 8+( resp. S_) iff Diju(a) ---+ D+( resp. D_j)

These two sets exist because of the topological nature of the curve C (see Figure 1).

Let e > 0 and Xo be a point of 2". There exists r/> 0 such that for max{[a,_ - x0[, lax -

x0[} < 77, we have the following development of u for points of S+ :

u(a) = _ _ Diju(xo)(az - Xo)i(au -- yo) j + E (Di + + o(1)) (ax -- Xo)i(au - y0) j,
/=0 i+j=l i+ j=p+ l

where a_ and a u are the x- and y- components of a and D+,a is the limit of the i j partial

derivative of u when x ---* x0 on the right and Io(1)1_< The same type of development is

also true for points of S_ ; D .+. is replaced by D_. The properties of the determinants allowsa

us to get for any subset of cardinality N(p) that, by changing the ordering of the points if

necessary,

Ptoo

Roo

+ 1 i 1- xo)(a -D_j(a_ yo) j

D+(ay _ i m,, xo) -- Vo)5
• .. _ vo)J ...

D-(aN(P) _ xo)i(aN(P) - yo) _

det( Roo . . . Rop)

o(1)(a_ - Xo)i(a_ - yo) j

o(1)(a m , m-x0) (av -yo)J

,.. o(1)(a m+l -- xo)i(ar_ +1 -- yo) j "'" Rop

, (14)

o(1)(aN(P)- Xo)i(aJ(P) - yo) j
+ det(Roo'" Rop)

where the index L' stands for (i, j) in the lexicographic order. For the sake of simplicity, let

us denote by #t and ul the coefficients obtained from the first part of the right hand side of

equation 14 by replacing D ,+.by 1 and D_ by 0 for ttl and vice versa for ul so thatt3

c_(P'L',= ( D+ + o(1))tt, + (D_j + o(1))u,.

12
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We have to notice that the sum of #l and ut is one, and that if all the points of I are on the

same side of C, then either #/or ui is zero. Then, using Iemma 2.2 and the above remarks,

we have, if [D_j] = D'+',3- D_ :

aL = [Dij] y_ gt)_L L'+ y_ o(1)#/AL L'+ _ o(1)vtAL L',
c,_d(I)=p c,_d( _)=p c,,d( X)=p

SO that
I

}[D'j]I I E /_zAL L' <_ [aL[ + e _ (I/_,I + [p/]) IALL' I.

Icard( I)=p card( l)=p

We can also get a similar inequality by replacing #I by v1 if the points of I are not on the

same side of C so that :

--o It , ll "[ _<-o {It , ll

+ I[D,j]I ]E=o.d(,)=p.,A_ L']}

+ 2 hP-"[aL[ + 2eh "-n F_._,_d(t)=, ([ttt[ + [utl)[A L L'I.

(15)
When all the points of I are on the same side of d the factor 2 is replaced by 1. Because of

inequality (11) and from Hadamard's inequality, one has :

_a_+(al--xo)2i(al--yo)2J+_s_(al--Xo)2i(al--yo) 2j

Iml+ I_,1< _IIRL,]I

This latter expression is bounded above by a constant C because L' corresponds to (i, j)

in the lexicographic order, without any additional conditions on the geometry. So, the

inequalities of (15), with the help of the first inequality of lemma 2.4 become (up to a factor

2 sometimes) :

h'-''[DiJ]'l_a,d(O=, y_ ALL't_h'-n'aL'+eC"

for a given constant C'. Now, summing up these inequalities for i + j = n, with the help of

the second inequality of lemma 2.4 one gets our result for e small enough. ,

This result enables us to detect the regions of smoothness from those where a jump in

one of the derivatives occurs. It is true when conjecture 2.1 is true, and at least for degree

1 and 2.

13



3 An E.N.O. Reconstruction Technique

In recent papers, Harten and several other authors [3, 4, 5, 6, 7] have tried to derive numerical

methods that are able to achieve a higher order of accuracy than classical TVD methods.

There are several versions of these techniques, but they can be generally viewed in the

following way : starting from some approximation of a real function u (point values or

average values in some control volumes), find a pointwise high order approximation u. Two

tools are then used :

• an essentially non oscillatory Lagrange type interpolation of a function w,

• this function w may be u itself if one starts from point values or either the primitive

function of u or its convolution product with the characteristic function of a copy of

the control volume if one can pass from one to another by a translation.

The latter deconvolution technique can only be applied, at least in its standard version, to

regular meshes as shown in section 3.2.

In this section, we want to adapt both tools to the situation of unstructured meshes. At

least for the second point, the situation seems at first glance very bad : the reconstruction

via primitive function cannot be applied in the case of unstructured meshes because the only

solution would be to apply it to integrals over domains like _M = [al, bx] x [a2, b2], possibly

with a suitable transformation of the plane as in [8], which are not in general the union of

control volumes.

Now, the reconstruction via deconvolution technique can only be applied to regular

meshes (i.e. meshes where the control volumes are translated form one node to another). In

this section, we show how to adapt this technique for irregular meshes.

In what follows, 7- is a triangulation of _, a domain of IR 2, u is a function defined on

that domain. Around each node i of T, we may define a control volume Ci in many different

ways. An example is (see Figure 2) the control volume whose boundary is the segment

joining the centroids G of the triangles (i,j,k) having i as a vertex and the middles I1,I2

of the segments of those triangles (type I). Another type of control volume is obtained by

considering each triangle as the control volume of its centroid. The triangulation we need

to describe the ENO algorithm is not 7" but another one built from the centroids of the

triangles of 7-. These control volumes always satisfy :

• [.Jie_- Ci is the numerical domain _h, an approximation of the physical one,

• C_ N Cj is of empty interior when i _ j (generally speaking, a collection of segments or

an empty set).

14



3.1 Non oscillatory interpolation

Let us consider n > 0. In this section, we show how to generalize the n + 1-th order E.N.O.

interpolation technique exposed in [4, 5] to unstructured meshes. As the results of chapter

2 indicate, we must deal with meshes where the stencils we need satisfy the property of

lemmas 2.1 and 2.2. This wilt be the case for most meshes.

Let 7" be a triangulation of _/, a domain in lR 2, and u a function defined on that domain.

The results we have obtained in chapter 2 can be summarized as follows :

• if $(n) is an admissible stencil such that u is smooth in its convex hull, then

y] laijl,
i+j=n

remains finite,

• if in the convex hull of S (_), u admits continuously differentiable derivatives only up

to the order k < n, then

I_i jl = 0([ uc'O] h_-"),
i+j=n

where h is the diameter of S (_).

Then, as suggested by [4, 5], the E.N.O. algorithm we propose is to consider Ha(u) defined

on Ci by the following recursive algorithm :

For a node i,

1. Let {Ti} be the set of triangles of T having i as a vertex. Consider all the linear

interpolations where the Ti's are the stencils. Choose the one, T_in, where the sum

is minimal. We set $(1) = the nodes of T,_i,_.

2. Let $(=-1) be the stencils defined at the previous step. Consider all the nodes sur-

rounding S ("-1) in T and consider all the stencils obtained form 3"("-1} by adding n + 1

of the nodes surrounding S (n-l). Choose the stencil minimizing :

i+j=n

We have intentionally left the second point imprecise because it is obvious that the

number of stencils to consider is in general hugel To give an example, if one considers Figure

15
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3 for which n = 2, one sees that possible stencils are the vertices of triangles Tmi,_ and 3 of

the ten other triangles. This can be repeated for each of the three edges of Tr_i,_ and leads

to a total of 3 × C_0 = 360 possible stencils ! So, one has to define criteria for choosing the

"good" and "bad" stencils. These criteria are essentially heuristic and a priori ones .

One that seems natural is that when one considers the control volume around each node,

the collection of the control volumes of all points of the stencil should be convex. Another

one is that the criteria leads to the smallest possible number of stencils, but the stencils must

not be confined in a particular angular area of the plane, in order not to favor any direction.

With this in mind, two possible sets of stencils for third order interpolation are:

. the nodes of triangle Train plus, for each of its edges, the three additional nodes of

triangles T1, T2, T3. This leads to a maximum of three stencils per triangle,

• or the nodes of triangles of Tm_,_ plus, for each of its edges, the three additional nodes

of triangles of

- T1, T2, T3,

- T1, T2 and T4 or Ts,

- T1, T3 and T6 or 7'7,

- T1, T9 or T10 and one of the six triangles T2, T3, T4, Ts, T6, T_.

The second solution leads to a maximum number of 52 stencils once T,_,_ has been found.

We have made several tests to evaluate the "performance" of each type of stencil. They are

given in section 4.

This particular interpolation is n + 1-th order accurate; because u is a polynomial of

degree less than n, we have IIl(u) = u. This property ensures the n + 1-th order accuracy

[15], and in particular, we have the estimations of theorem 2.3.

3.2 Deconvolution technique revisited

If (x)ie_ is a regular mesh of R and u is a real valued function on IR, the reconstruction by

the deconvolution technique consists of applying the previous algorithm, not to u but to

_,(y) _ 1 ["+'/_ u(x + y - x_)dx, (16)
Xi+ 1 -- X i JXi_l/2

where, as usual, the mesh size Ax = Xi+l - xi is constant and x_+1/2 = xi + Ax/2. In

particular, we see that _i does not depend on i and that _(x_) is the average of u on

[x_-l/2,xi+_/2]. T_hese Values are assumed to be known. Let II,(_) be the m + 1-th order

Lagrange interpolation as decribed in the previous section, with m > n. Then, the idea is to

16
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perform a Taylor expansion of K and its successive derivatives around xi, to truncate them

at order n - k, to replace the values 3, ..., _(") by III(K) and its n successive derivatives,

and to replace the values of u by those of 172(u), the approximation of u we are looking for :

= EL1 t! ,

(17)IIl(u)(k) (xi)

na(_)(n)(x,) = a. . ,

where

- t dx
l "Xi-ll2

ai = Ax

The linear system is easily invertible because the matrix is upper triangular and its diagonal

consists of all "l"s. Furthermore, it is shown in [4], for example, that the average .value of

II2(u) over [x_-_/2,x_+_/_] is exactly _i. Last, this approximation has the desired order of

accuracy when u is smooth because polynomials are left invariant by the construction.

This latter point is the fundamental reason why one achieves the expected order of

accuracy . Polynomials are left invariant by the construction because the shape of the

control cells does not change from one point to another. If this where not the case, i.e if

iXi+l/2 = xi+ 1 -- X i were not constant, the formula (16) would indeed depend on the point

xi and this property would be lost. In order to show this, we simply consider u(x) = x and

a rn + 1-th order interpolation that has values ui at points xi. Assuming that {x0, xl," "} is

the stencil selected by the E.N.O. algorithm, we have :

1 Ax3/2 + Ax_l/2
IIl(_) =uo+K(x-xo)+... where K= _+ Axi/2

When the mesh is not regular, K # 1 in general. To obtain II2(u) = u, one must have :

= +
H2(_)(y) = K = u'(y).

The second equation indicates that one must have K = 1 which is, in general, not true.

To overcome this problem, we propose the following technique : apply the ENO search

algorithm not to _ defined by equation 16 but to :

1
/_ u(x + Y - xo)dx, (18)

17



where 5'('0 is any possible stencil around the node x0 that one has to test and Ca(.) is the

union of the control volumes of each node in $(.0 :

= L.Jcj. (19)
jES('*)

Now, one has to evaluate the integral (18) from the average value of u. This cannot generally

be achieved for any function, but is possible for the polynomials of IP_[X, Y], at least in

general. This will be true for the N(n) linear forms over IP_[X,Y] because

1

/c P(x) dx, forall P E II_[X, Y], (20)< P >i" areaCi

are independent. For all the meshes we have considered, these linear forms where always

independent, so the problem had a solution. If this is true, then one can find coefficients

hi(y), 1 < l < g(n) so that

N(n)1

Iv u(x + y- Xo) dy = _ a,(y) < u >i, (21)
area( Cs(,o ) s(.) ,=,

when u belongs to ll_[X, Y]. If not, the equation (21) gives a n + 1-th order quadrature

formula. With all this, we get the following theorem whose proof is obvious.

Theorem 3.1 The algorithm defined by the E.N.O. technique with (18), (19),(20) and (21)

leaves invariant the polynomials of Il_[X, Y] and hence gives a n + 1-th order approximation

of smooth functions. Moreover, this approximation is conservative up to the quadrature

formula 21.

3.3 Some remarks for the practical calculation of the reconstruc-

tion

In section 2.1.3, we have discussed the problem of the practical determination of the coeffi-

cients of a Lagrange interpolant because the linear systems to be solved have in general small

coefficients. The same problem also arises here if one uses the monomials (X-Xo)_(Y-yo) j to

determine the hi(y) of equation 21. This can easily be seen by using Hadamard's inequality

as in section 2.1.3.

For a given node x0, the E.N.O. technique we propose naturally introduces one triangle

having that node as vertex, the triangle Tmi,_ as in Figure 3 . So, as in section 2.1.3, we will

use the barycentric coordinates towards that triangle for practical computations.

18



4 Numerical examples

We have performed several tests on the second and third order E.N.O. interpolation and

E.N.O. reconstruction, but we only report the third order results since they are a priori

more challenging. In particular, we intend to check numerically that the expected order of

accuracy is in fact reached for smooth functions.

The two types of stencils have been tested on the latter case. The use of the second type

of possible stencils results in a much more expensive approximation (in general, one must

test 52 stencils per triangle versus only 3 in the simplest version) and the results have never

been dramatically improved. All the results that are presented bellow have been obtained

with the 3 stencil version of the method.

In all these examples, we have assumed that the control volumes are of "type I". The

practical calculations of the averages in these control volumes have been performed with a

5-th order quadrature formula [14].

The tests on smooth functions will be performed on :

u(x, y) = cos(2_(x 2 + y2)).

We have displayed in Figure 4 the L °° error of the interpolation. The plain curve with

squares is obtained with the E.N.O. interpolation, the plain curve with circles is obtained

with the E.N.O. reconstruction. The dashed line indicates the slope -3. One can see that

the expected order of accuracy is indeed reached. The mesh size h has been measured by

choosing the largest segment of the triangulation. All the error estimates have been obtained

on irregular meshes as the one presented on Figure 5. These meshes are obtained as random

perturbations of regular structured meshes. The set of points that one obtains is triangulated

by the Brower algorithm to get a Delaunay triangulation. The main difference between such

a mesh and the regular structured one is that the number of triangles each node belongs to

is different. We also have done the same tests with regular meshes, and we have not seen

any degradation of the convergence.

The locally smooth function we have chosen is obtained by a modification of that used

by Harten in [7] for example : if ¢ is any angle, let f¢ be :

in (_r2),

ifr _<-½, -rs
h(x,Y) = if r > ½, h(x,y) = 2r- _sin(37rr),l where r = x + tan(¢)y, (22)

if Irr< ½, h(x,y) = Isin(2rr)l,

and let u be :

if z_< ½cos_ry,if x > ½cosTry,

u(x,y) = y),

u(x,y) = f_,/;Z(x, y) + cos
(23)
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The function definedby (22)-(23)showsdiscontinuitiesin the function itself andits first order
derivatives;someof the discontinuitiesarestraight lines (never alignedto the mesh),one is

a curved line wherethejump changesfrom onepoint to another. Last, the behaviourof u is

basically one-dimensional on the left of the curve x = cos _ry/2 and really two-dimensional

on the right.

A plot of this function is given in Figure 6. One should obtain straight lines and smooth

discontinuity transitions contrary to what is shown in the Figure : this is an effect of the

graphic device adapted to/91 interpolation.

In Figures 7 and 8, we have displayed the node values of the E.N.O. reconstruction for

two meshes (1600 nodes and 6400 nodes). To better see the behaviour of both approximation

techniques, we also present cross-section on three lines : Y = 0.75, Y = 0 and Y = -0.45.

The approximations are obtained from the 1600 nodes mesh (see Figure 5). The latter

line goes through one of the triple points (see Figure 6). One can see that the various

discontinuities and the smooth regions are well captured by both techniques.

To end this section, we must note that the algorithm for choosing the stencil may lead

to some difficulties at the boundaries as can be seen in Figure 6 on the left upper corner :

the most left upper triangle of the mesh (Figure 5) does not admit any additional points of

the type we consider to make a stencil.

5 Conclusion

In this report, we have developed two methods for the reconstruction of a function admitting

discontinuities only on regular planar curves from their node values or from their average in

control volumes that surround them. In order to give a firm basis to the Essentially Non-

Oscillatory interpolation, we have studied the behaviour of the highest order coefficients of

the Lagrange interpolation of smooth functions and unsmooth ones for which the discontinu-

ities lie on regular curves. We have also given an adaptation of the so called "reconstruction

via deconvolution" to irregular triangulated meshes.

These techniques have been shown to work quite well on smooth and unsmooth functions.

In particular, we have shown in these examples that the minimum number of possible stencils

was sufficient for our purpose.
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= Figure 3: Some possible interpolation points. Circles : points of T,_in (second order in-

terpolation), black circles : points that may be added to obtain a stencil for third order

interpolation.

24



0.0

-0.5

-1.0

"L"
o

L
Ld -1.5
0

(zin
0

-2.0

-2.5

.3.0

/
/

/
/

/
1

/
/

/
/

/
/

/
/

/
/

/
/

/

I I I I

2.0 -1.6

/
/

/
/

I I 1 I

-t.2 -0.8

Log IO('h)

Figure 4: L _ error for f(x,y) = cos[2r(x 2 + y2)]. Squares : E.N.O. interpolation only,
Circles : E.N.O. + reconstruction. Dashed line : slope -3

25



Figure 5: Typical mesh. 1600nodes,3042triangles.

26



Y=0.75-

Y=O.O

Y=-0.45

Figure 6: Exact function, Mesh with 6400 nodes. Min=-l.331, Max=2.650, 6 = 8.292 10-2.
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Figure 7: E.N.O. reconstruction with the 1600 nodes mesh. Min=-l.308, M_x=2.651, 6 =

8.249 10 -2 •
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Figure 8: E.N.O. reconstructionwith the 6400nodesmesh. Min=-l.325, Max=2.650, /_ =

0.8281 10 .2 .
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(a) E.N.O. interpolation.
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Figure 9: Cross-section at Y = 0 of the E.N.O interpolation (a) and the E.N.O. reconstruc-

tion (b) for i600 nodes the mesh.
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(a) E.N.O. interpolation.
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reconstruction (b) for the 1600 nodes mesh.
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but we also show how to overcome this difficulty. The global method has the expectec

order of accuracy but is conservative up to a high order quadrature formula only.

Some numerical examples are given which demonstrate the efficiency of the method.
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